ارائه رویکردی نوین در پیش‌بینی و کشف تقلب صورت‌های مالی با استفاده از الگوریتم زنبور عسل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای حسابداری، دانشگاه تربیت مدرس، تهران، ایران.

2 دانشیار حسابداری، دانشگاه تربیت مدرس، تهران، ایران.

3 استاد حسابداری، دانشگاه تربیت مدرس، تهران، ایران.

4 استاد مدیریت صنعتی، دانشگاه تربیت مدرس، تهران، ایران.

10.22103/jak.2019.13616.2927

چکیده

هدف: با توجه به اینکه برای کتمان تقلب در صورت‌های مالی از طرحهای پیچیده و سازمان یافته استفاده می‌شود، توسعه روش‌های کشف تقلب می‌تواند به عنوان راهکاری مورد توجه قرار گیرد. لذا، پژوهش حاضر با استفاده از الگوریتم زنبورعسل به توسعه روشهای کشف تقلب در صورت‌های مالی پرداخته است.
روش: برای بررسی موضوع سه روش الگوریتم زنبور عسل، الگوریتم ژنتیک و رگرسیون لوجستیک به کارگرفته شده است. نمونه آماری این مطالعه متشکل از 120 شرکت پذیرفته شده در بورس اوراق بهادار (60 شرکت مشکوک به تقلب و 60 شرکت غیر متقلب) برای دوره زمانی 1396-1385 است. شرکت‌های مشکوک به تقلب بر مبنای 1) اظهارنظر تعدیل شده حسابرسی، 2) وجود تعدیلات سنواتی با اهمیت و صورت‌های مالی تجدید ارائه شده در مورد موجودی‌ها و سایر دارایی‌ها و... 3) وجود اختلافات مالیاتی با حوزه مالیاتی طبق یادداشت ذخیره مالیات بر درآمد و پرونده مالیاتی و بند شرط گزارش حسابرسی انتخاب شدند. پس از استفاده از آنتروپی متقابل، 16 نسبت مالی به عنوان پیش‌بینی کننده‌های بالقوه گزارشگری مالی متقلبانه معرفی شدند.
یافته‌ها: یافته‌های پژوهش نشان داد که روش الگوریتم زنبور عسل با دقت پیش‌بینی 5/82 درصد نسبت به دو روش الگوریتم ژنتیک  با دقت 5/77 درصد و رگرسیون لوجستیک با دقت 5/72 درصد، از عملکرد بهتری جهت شناسایی شرکت‌های مشکوک به تقلب در صورت‌های مالی برخوردار است.
نتیجه‌گیری: نتایج پژوهش حاکی از آن است، روش پیشنهادی این پژوهش در مقایسه با دیگر روش‌های تکاملی، از دقت پیش‌بینی بالاتر، درصد خطای کمتر و سرعت نسبتاً خوبی برخوردار است.

کلیدواژه‌ها


اعتمادی، حسین؛ زلقی، حسن. (1392). کاربرد رگرسیون لجستیک درشناسایی گزارشگری مالی متقلبانه. دانش حسابرسی، 51، 25-1.
تقوی، مصطفی ؛ نوبری، نازک. (1385). کاربرد الگوریتم‌های تکاملی در داده کاوی. اولین همایش بین المللی روش‌های تحقیق در فنون مهندسی، 15-23.
خواجوی، شکراله؛ ابراهیمی، مهرداد. (1396). مدلسازی متغیرهای اثرگذار برای کشف تقلب در صورت‌های مالی با استفاده از تکنیک داده کاوی، حسابداری مالی،33، 25-24.
رحیمی، امیرمسعود؛ رمضانی خوانساری، احسان. (1393). توسعۀ الگوریتم غذایابی کندوی زنبور عسل برای حل مسئله مسیریابی خودرو، مهندسی حمل و نقل، 6(1)، 115-102.
صدیقی کمال، لیلا. (1392). تقلب در صورت‌های مالی براساس گزارش انجمن بازرسان رسمی تقلب، حسابرس، 64، 118-116.
صفرزاده، محمدحسین. (1389). توانایی نسبت‌های مالی در کشف تقلب در گزارشگری مالی:تحلیل لاجیت، دانش حسابداری، 1(1)،163-137.
قادری، کاوه؛ قادری، صلاح‌الدین. (1396). تحلیل بیش‌اطمینانی مدیران از عملکرد خود در شرکت‌های متقلب، بررسی‌های حسابداری و حسابرسی، 2(24)، 262-243.
فرقاندوست حقیقی، کامبیز؛ هاشمی، سیدعباس؛ فروغی دهکردی، امین. (1393). مطالعۀ رابطۀ مدیریت سود و امکان تقلب در صورت‌های مالی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران، دانش و پژوهش حسابداری، 56، 68-47.
کمیته تدوین استانداردهای حسابرسی. (1384). استانداردهای حسابرسی، سایر خدمات اطمینان بخشی و خدمات مرتبط، سازمان حسابرسی.
گرجی، عطااله. (1388). بررسی موانع به کارگیری الگوریتم ژنتیک در انتخاب سبد سرمایه‌گذاری توسط سرمایه‌گذاران در بورس اوراق بهادار تهران، پایان‌نامۀ کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران مرکزی.
مرادی، جواد؛ رستمی، راحله؛ زارع، رضا. (1393). شناسایی عوامل خطر مؤثر بر احتمال وقوع تقلب در گزارشگری مالی از دید حسابرسان و بررسی تأثیر آنها بر عملکرد مالی شرکت، مجله پیشرفت‌های، 1، 173-141.
مهدوی، غلامحسین؛ قهرمانی، علیرضا. (1396). ارائۀ الگویی برای کشف تقلب به وسیله حسابرسان با استفاده از شبکۀ عصبی مصنوعی، دانش حسابرسی، 67، 60-50.
هاشمی، سیدعباس؛ حریری، امیرسینا. (1396). ارزیابی توانایی قانون بنفورد در شناسایی و پیش‌بینی کشف تقلب مالی، بررسی‌های حسابداری و حسابرسی، 2(24)، 302-283.
References
Abdul Aris, N., Mohd A., Siti Maznah, O.R., Mohamad Zain, M. (2015). Fraudulent Financial statement detection using statistical techniques: the case of small medium automotive enterprise. The Journal of Applied Business Research, 31(4), 115-120.
Association of Certified Fraud Examiners (ACFE). (2012). Gobal Fraud Study.
Auditing Standards Setting Committee (2005). Standard on Auditing, Other Assurance Engagmens, and Related Services, Audit Organization [In Persian].
Blakley, M. (2009). Fraud detection using a database platform. Available online at: http://www.slideshare.net/mblakley, 24 April 2013.
Dorminey, J.W., Fleming, A.S., Kranacher, M., Riley, R.A. (2012). Financial fraud: A new prespective to an old problem. The CPA Journal, 8(3), 61-65.
El-Dyasty, M. (2002). Combining belief functions and neural networks to assess the likelihood of fraud: The case of commercial bank audits, Working Paper, Manscmra University, 1-45.
Etemadi, H., Zelaghi, H. (2014). Application of logistic regression in identifying fraud financial reporting. Auditing Knowledge, 51, 1-25 [In Persian].
Forghandust Haghighi, K., Hashemi, S.A., Foroughi Dehkordi, A. (2014). Studying the relationship between earnings management and the possibility of fraud in the financial statements of listed companies in Tehran Stock Exchange. Knowledge and Research Accounting, 47, 56-68 [In Persian].
Ghaderi, K., Ghadei, S. (2017). The analysis of the executive overconfidence in fraudulent companies. Journal of Accounting and Auditing Review, 24(2), 243-262 [In Persian].
Gorji, A. (2009). Investigating the Obstacles Using Genetic Algorithm in Selecting Investment Basis by Investors in Tehran Stock Exchange, Master's Thesis, Islamic Azad University, Tehran Central Branch [In Persian].
Guney, K., Onay, M. (2010). Bees algorithm for interference suppression of linear antenna arrays by controlling the phase-only and both the amplitude and phase. Expert Systems with Applications, 37, 3129–3135.
Hashemi, S.A., Hariri, A.S. (2017). The analysis of bedford’s law ability to identify and predict financial fraud detection., Journal of Accounting and Auditing Review, 24(2), 283-302 [In Persian].
Kotsiantis, S. (2007). Forecasting fraudulent financial statements using data mining. World Enformatika Soc., 12, 283-288.
Karaboga, D., Celal, O. (2011). A novel clustering approach: Artificial bee colony (ABC) algorithm, Applied Soft Computing, 11, 652- 657.
Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Technical Report, Computer Engineering Department, Engineering Faculty, Erciyes University.
Khajavi, S., Rezaei, G. (2017). Modeling effective variables for fraud detection in financial statements using data mining techniques. Journal of Financial Accounting, 33, 24-26 [In Persian].
Mahdavi, G.H., Ghahremani, A. (2017). Providing a model for fraud investigation by auditors using artificial neural network. Journal of Audit Science, 67, 50-60 [In Persian].
Moradi, J., Rostami, R., Zare, R. (2014). Identifying the risk factors affecting the likelihood of fraud in financial reporting from the auditor's point of view and investigating their impact on financial performance. Journal of Accounting Advancement, 1, 141-173 [In Persian].
Peng, H., Long, F., Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Machine Intell, 6, 26-38.
Priya Ranganathan, C.S., Pramesh, L., Rakesh A. (2017). Common pitfalls in statistical analysis: Logistic regression. Perspect Clin Res, 8(3), 148–151.
Reddy, Y.V., Sebastian, A. (2009). Parameters for estimation of entropy to study price manipulation in stock markets. Research publication University of Dehli.
Rezaee, Z., Riley, R. (2010). Financial Statement Fraud: Prevention and Detection, 2nd edition. Hoboken New Jersey: John Wiley and Sons Inc. xi, 12-284.
Sadgalia, I., Saela, N., Benabbou, F. (2019). Performance of machine learning techniques in the detection of financial frauds. Second International Conference on Intelligent Computing in Data Sciences (ICDS 2018), 1986, 92-100.
Safarzadeh, M.H. (2010). The ability of financial ratios to detect fraud in financial reporting: logit analysis. Accounting Knowledge, 1(1), 137-163 [In Persian].
Samer, M.S., Sakinah, A.P. (2015). Significance of parameters in genetic algorithm, the strengths, its limitations and challenges in image recovery. Journal of Engineering and Applied Sciences, 10(2), 2001-2010.
Sedighi Kamal, L. (2014). Fraud in financial statements according to the report of the association of official insolvency officers. Auditor, 64, 116-118 [In Persian].
Stice, J. (1991). Using financial and market information to identify preengagement market factors associated with lawsuits against auditors. The Accounting Review, 66(3), 516-533.
Suduan Chen. (2016). Detection of fraudulent financial statements using the hybrid data mining approach. Springer Plus, 5(89), 509-535.
Tangod, K., Kulkarni, G. (2015). Detection of financial statement fraud using data mining technique and performance analysis. International Journal of Advanced Research in Computer and Communication Engineering, 4(7), 312-320.