ارزیابی خطر تقلب مدیران با استفاده از روش داده‌کاوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری حسابداری، دانشگاه اصفهان، اصفهان، ایران.

2 دانشیار حسابداری، دانشگاه اصفهان، اصفهان، ایران.

3 استادیار اقتصاد، دانشگاه اصفهان، اصفهان، ایران.

چکیده

بررسی، ارزیابی و تشخیص گزارش‌های متقلبانه که از آن با نام گزارش‌های دستکاری شده نیز یاد شده است، سابقۀ دیرینه‌ای در ادبیات حسابداری و مالی دارد. سهامداران، مدیران را به عنوان نمایندگان خود در شرکت انتخاب می‌کنند و طبیعی است که نسبت به تشخیص صداقت در گزارشگری مدیران، حساس باشند. حسابرسان نیز در راستای بررسی‌های خود ملزم به ارزیابی و برآورد خطر تقلب در روش‌های اجرا شده توسط مدیریت واحد تجاری هستند تا بر اساس این ارزیابی، حجم آزمون‌های حسابرسی و متعاقباً حق‌الزحمة پیشنهادی خود را تخمین بزنند. پژوهش حاضر برای ارزیابی و تشخیص خطر تقلب مدیران، از یک روش غیرمالی استفاده کرده است که مشخصاً مبتنی بر تجزیه و تحلیل متن گزارش هیئت‌مدیره به مجمع عمومی صاحبان سهام است. در این روش، واژه‌های گزارش‌های هیئت مدیره به مجمع بررسی شده، پس از پالایش شدن، با استفاده از نوع خاصی از رگرسیون تحت عنوان رگرسیون‌های LASSO الگویی برای ارزیابی و تشخیص شاخص خطر تقلب در شرکت‌ها ارائه شده است که با دقتی بین 89% تا 91% قادر به تشخیص صحیح شاخص خطر بالای تقلب در شرکت‌ها است.

کلیدواژه‌ها


اعتمادی، حسین؛ زلقی، حسن. (1392). کاربرد رگرسیون لجستیک درشناسایی گزارشگری مالی متقلبانه. دانش حسابرسی، 13(51)، 163-145.
افلاطونی، عباس. (1394). تجزیه و تحلیل آماری با Eviews در تحقیقات حسابداری و مدیریت مالی. تهران: ترمه.
بروکس، کریس. (1971). مقدمه‌ای بر اقتصادسنجی مالی، ترجمۀ احمد بدری و عبدالمجید عبدالباقی، تهران: نص، (1389).
خدادادی، ولی الله؛ ویسی، سجاد؛ چراغی نیا، علی. (1395). عدم قطعیت مدیریت و حق‌الزحمۀ حسابرسی. دانش حسابداری، 7(27)، 133-109.
رهنمای رودپشتی، فریدون. (1391). داده‌کاوی و کشف تقلب‌های مالی. دانش حسابداری و حسابرسی مدیریت، 1(3)، 17-33.
صفرزاده، محمدحسین. (1389). توانایی نسبت‌های مالی در کشف تقلب در گزارشگری مالی: تحلیل لاجیت. دانش حسابداری، 1(1)، صص. 163-137.
فرج‌زاده دهکردی، حسن؛ آقایی، لیلا. (1394). سیاست تقسیم سود و گزارشگری مالی متقلبانه. مطالعات تجربی حسابداری مالی، 13(45)، صص. 114-97.
مهرانی، کاوه؛ حصارزاده، رضا. (1387). مروری بر تئوری‌ها و الگو‌های کشف تقلب. دانش و پژوهش حسابداری، 15، صص. 11-6.
نمازی، محمد؛ ابراهیمی، فهیمه. (1395). الگو‌بندی و تعیین اولویت عوامل مؤثر بر قصدگزارش تقلب‌های مالی توسط حسابداران. مطالعات تجربی حسابداری مالی، 12(49)، صص. 28-1.
وحیدی الیزی، ابراهیم؛ حامدیان، حامد. (1388). برداشت حسابرسان ایران از کارایی علائم خطر در کشف گزارشگری مالی متقلبانه. تحقیقات حسابداری، 3، صص. 197-162.
Aflatooni, A. (2015). Statistical Analysis in Accounting and Financial Management by Eviews (Vol. 2). Tehran: Termeh [In Persian].
Alden, M.E., Bryan, D.M., Lessley, B.J., Tripathy, A. (2012). Detection of financial statement fraud using evolutionary algorithms. Journal of Emerging Technologies in Accounting, 9(1), 71-94.
Amani, F.A., Fadlalla, A.M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24(2017), 32-58.
Baldwin, A.A., Brown, C.E., Trinkle, B.S. (2006). Opportunities for artificial intelligence development in the accounting domain: The case for auditing. Intelligent Systems in Accounting, Finance and Management, 14(3), 77-86.
Baum, C.F. (2006). An Introduction to Modern Econometrics Using Stata. College Station, Texas: Stata Press.
Brooks, C. (1971). Introductory Econometrics for Finance (A. Badri & A. Abdolbaghi, Trans. Vol. 1). Tehran: Nass [In Persian].
Cecchini, M., Aytug, H., Koehler, G., Pathak, P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50(1), 164-175.
Dechow, P., Ge, W., Larson, C., Sloan, R. (2011). Predicting material accounting misstatements. Contemporary Accounting Research, 28(1), 17-82.
Elliott, R.K., Willingham, J.J. (1980). Management Fraud: Detection and Deterrence. New York: Petrocelli Books, 35-46.
Etemadi, H., Zalaghi, H. (2013). Application of logistic regression in identifying fraudulent financial reporting. Journal of Audit Science, 13(51), 5-23 [In Persian].
Farajzadeh, H., Aghaei, L. (2015). Dividend policy and fraudulent financial reporting. Empirical Studies in Financial Accounting, 12(45), 97-114 [In Persian].
Feldman, R., Govindaraj, S., Livnat, J., Segal, B. (2010). Management’s tone change, post earnings announcement drift and accruals. Review of Accounting Studies, 15(4), 915-953.
Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
Glancy, F., Yadav, S. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595-601.
Goel, S., Gangolly, J. (2012). Beyond the numbers: mining the annual reports for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 19(2), 75-89.
Goel, S., Gangolly, J., Faerman, S.R., Uzuner, O. (2010). Can linguistic predictors detect fraudulent financial filings? Journal of Emerging Technologies in Accounting, 7(1), 25-46.
Greene, W.H. (2012). Econometric Analysis (Vol. 7): Prentice Hall.
Han, J., Kamber, M., Pei, J. (2006). Data Mining: Concepts and Techniques: Morgan Kaufmann.
Hastie, T., Tibshirani, R., Friedman, J. (2008). The Elements of Statistical Learning Data Mining, Inference, and Prediction (Vol. 2). Stanford, California: Springer.
Hoberg, G., Lewis, C. (2017). Do fraudulent firms produce abnormal disclosure? Journal of Corporate Finance, 43, 58-85.
Hribar, P., Kravet, T., Wilson, R. (2014). A new measure of accounting quality. Review of Accounting Studies, 19, 506-538.
Humphreys, S., K. Moffit, M. Burns, J. Burgoon, Felix, W. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585-594.
Jackson, J.M. (2002). Data mining: A conceptual overview. Communications of the Association for Information Systems, 8(1), 267-296.
Jensen, M.C., Meckling, W.H. (1976). Theory of the firm: managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305-360.
Khodadadi, V., Veisi, S., Cheraghinia, A. (2016). Management uncertainty and audit fees. Journal of Accounting Knowledge, 7(27), 109-133 [In Persian].
Kim, Y., Vasarhelyi, M.A. (2012). A model to detect potentially fraudulent/ abnormal wires of an insurance company: An unsupervised rule-based approach. Journal of Emerging Technologies in Accounting, 9(1), 95-110.
Kochetova-kozloski, N., Messier Jr., W.F., Eilifsen, A. (2011). Improving auditors' fraud judgments using a frequency response mode. Contemporary Accounting Research, 28(3), 837-858.
Larcker, D., Zakolyukina, A. (2012). Detecting deceptive discussions in conference calls. Journal of Accounting Research, 50(2), 495-540.
Li, F. (2010). Textual analysis of corporate disclosures: A survey of the literature. Accounting Literature, 29(1), 143-165.
Liou, F.M. (2008). Fraudulent financial reporting detection and business failure prediction models: A comparison. Managerial Auditing Journal, 23(7), 650-662.
Loughran, T., McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of Finance, 66(1), 35-65.
Mehrani, K., Hesarzadeh, R. (2008). A review of theories and models of fraud detection. Accounting Knowledge and Research, 15 (Winter), 6-11 [In Persian].
Namazi, M., Ebrahimi, F. (2016). Modeling and identifying effective factors affecting the intention of reporting financial fraudulent by accountant. Empirical Studies in Financial Accounting, 13(49), 1-28 [In Persian].
Pai, P.F., Hsu, M.F., Wang, M.C. (2011). A support vector machine-based model for detecting top management fraud. Knowledge-Based Systems, 24(2), 314-321.
Pujari, A.K. (2001). Data Mining Techniques: Universities press.
Purda, L., Skillicorn, D. (2015). Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection. Contemporary Accounting Research, 32(3), 1193–1223.
Rahnamay Roodposhti, F. (2012). Data mining & financial fraud. Journal of Management Accounting and Auditing Knowledge, 1(3), 17-34 [In Persian].
Safarzadeh, M. (2010). The ability of financial ratios in detecting fradulent financial reporting: Logit analysis. Journal of Accounting Knowledge, 1(1), 137-163 [In Persian].
Tackett, J.A. (2013). Association rules for fraud detection. Journal of Corporate Accounting and Finance, 24(4), 15-22.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267-288.
Vahidi, E., Hamedian, H. (2009). Iranian auditors' perceptions of the effectiveness of risk signs in detecting fraudulent financial reporting. Accounting Researches, Fall (3), 162-197 [In Persian].
Wang, Z., Chen, M.H., Chin, C.L., Zheng, Q. (2017). Managerial ability, political connections, and fraudulent financial reporting in China. Journal of Accounting and Public Policy, 36(2), 141-162.