Predicting Financial Distress of Companies Using Textual Information of Board of Directors' Activity Reports

Document Type : Research Paper

Authors

1 Department of Accounting, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran.

2 Department of Information Technology Management, Allameh Tabatabai University, Tehran, Iran.

10.22103/jak.2024.22992.4017

Abstract

Objective: Financial distress is a serious concern for the economic sustainability of countries. The individual and social costs associated with financial distress have made its prediction a crucial issue for many managers, stakeholders, policymakers, and auditors. While most prior studies have relied on structured and quantitative financial data, this research aims to employ text mining techniques and machine learning algorithms to predict financial distress using unstructured data extracted from board of directors’ activity reports.
 
Method: To achieve this objective, the board of directors' reports of 100 listed companies over the period 2011–2021 were collected. The textual content of these reports was analyzed using Python, involving preprocessing, feature extraction, and feature selection. the statistical analysis and modeling phase was carried out using various machine learning algorithms.
 
Results: The results of the study indicated the superiority of the two methods, the decision tree model and the support vector machine with radial kernel, over other methods (including logistic regression, random forest, nearest neighbor, and support vector machine methods with linear, sigmoid, and polynomial kernels).
 
Conclusion: The findings of this study suggest that, rather than solely relying on numerical data and the ratios derived from such figures, text mining techniques can also be effectively utilized for analysis and prediction. Furthermore, by integrating insights from unstructured textual data with structured quantitative information, it is possible to enhance the prediction of corporate financial distress.

Keywords

Main Subjects


ابراهیمی سرو علیا، محمدحسن؛ باباجانی، جعفر؛ آخوند، محمدرضا و فاخر، اسلام (1397). ارائه الگویی برای پیش‌بینی پویای درماندگی مالی با استفاده از تحلیل بقاء. فصلنامه اقتصاد مقداری، 15(4)، 167-198. https://jqe.scu.ac.ir/article_14147.html.
افلاطونی، عباس (1392). تحلیل آماری با Eviews در پژوهش‌های حسابداری و مدیریت مالی. تهران، انتشارات ترمه. https://www.gisoom.com/11397041.
بت‌شکن، محمد هاشم؛ سلیمی، محمدجواد و فلاحتگر متحدجو، سعید (1397). ارائه یک روش ترکیبی به‌منظور پیش‌بینی درمانـدگی مالی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران. تحقیقات مالی، 20(2)، 173-192. https://jfr.ut.ac.ir/article_67697.html.
برزگری خانقاه، جمال؛ انصاری سامانی، حبیب و رزاززاده، لیدا (1398). پیش‌بینی وضعیت مالی شرکت‌ها با استفاده از تحلیل محتوای گزارش‌های هیئت‌مدیره. مطالعات تجربی حسابداری مالی، 16(64)، 135-160. https://qjma.atu.ac.ir/article_10959.html.
بولو، قاسم و احمدوند، میثم (1398). الگویی برای پیش‌بینی نکول شرکتی در بورس اوراق بهادار تهران. مجله دانش حسابداری، 10(1)، 1-38. https://jak.uk.ac.ir/article_2262.html.
پله، مولود؛ ایزدی نیا، ناصر و امیری، هادی (1398). بررسی تأثیر لحن گزارش‌های فعالیت هیئت‌مدیره بر عملکرد آتی شرکت‌ها مبتنی بر دو دیدگاه علامت‌دهی و رفتار فرصت‌طلبانه مدیران. دو فصلنامه حسابداری ارزشی و رفتاری، ۴(۸)، ۱-۳۱. http://aapc.khu.ac.ir/article-1-663-fa.html.
حاجیها، زهره و صابری روچی، محمدرضا (1400). متن‌کاوی و پیش‌بینی درماندگی مالی. مطالعات حسابداری و حسابرسی، 38،39- 53. https://www.iaaaas.com/article_134533.html.
حسینی، سید رسول و حاجیان نژاد، امین (1401). تأثیر توزیع آماری نسبت‌های مالی بر مقادیر مدل آلتمن با استفاده از شبیه‌سازی مونت‌کارلو. مجله دانش حسابداری، 13(3)، 161-193. https://jak.uk.ac.ir/article_3168.html.
رهروی دستجردی، علیرضا، فروغی، داریوش، کیانی، غلامحسین. (1397). ارزیابی خطر تقلب مدیران با استفاده از روش داده‌کاوی. مجله دانش حسابداری، 9(33)، 114-91. https://jak.uk.ac.ir/article_1932.html.
رحیمی، حمید؛ مینویی، مهرزاد و فتحی، محمدرضا (1403). پیش‌بینی پویا درماندگی مالی: مطالعه موردی. فصلنامه اقتصادی مالی، 18(66)، 385-408. https://sanad.iau.ir/fa/Article/1063299?FullText=FullText.
زارع بهمنیری، محمدجواد؛ حیدری سورشجانی، زهرا و جودکی چگنی، زهرا (1398). قدرت مدیران و لحن اعلان سود با تأکید بر نقش نظارت هیئت‌مدیره. فصلنامه حسابداری مالی، 44، 119-143. https://qfaj.mobarakeh.iau.ir/article-1-2005-fa.html.
عباسیان، عزت اله؛ شهرکی، کاوه؛ فلاح‌پور، سعید و نمکی، علی (1402). رویکردی نوین در پیش‌بینی درماندگی مالی با به‌کارگیری اطلاعات مبتنی بر شبکه مالی و روش ترکیبی درخت تصمیم تقویت گرادیان. مدیریت دارایی و تأمین مالی، 3(42)، 113-140. https://ensani.ir/fa/article/583773.
مهرانی، ساسان و نونهال نهر، علی اکبر (1392). آزمون تأثیر رویکردهای قضاوتی زبان در کاهش فاصلۀ انتظارات حسابرسی. بررسی‏‌های حسابداری و حسابرسی، 20(3)، 123-144. https://acctgrev.ut.ac.ir/article_35679.html.
مهرانی‌، ساسان؛ مهرانی، کاوه؛ منصفی، یاشار و کرمی، غلامرضا (1384). بررسی کاربردی الگوهای پیش‌بینی ورشکستگی زیمسکی و شیرانا در شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران. بررسی‏‌های حسابداری و حسابرسی، 41، 105-131. https://acctgrev.ut.ac.ir/article_18462.html.
نمازی، محمد و ابراهیمی، شهلا (1400). پیش‌بینی درماندگی مالی شرکت‌های پذیرفته شده در فرابورس و بورس اوراق بهادار تهران با استفاده از ماشین بردار پشتیبان. راهبرد مدیریت مالی، 9(32)، 115-132. https://jfm.alzahra.ac.ir/article_5588.html.
هاشمی گل سفیدی، افشین؛ لشگری، زهرا و حاجیها، زهره (1401). کاربرد یادگیری ماشین در ارائه الگویی برای پیش‌بینی ورشکستگی. تحقیقات حسابداری و حسابرسی، 14(56)، 171-190. DOI: 10.22034/iaar.2022.168271.

References

Abbasian, E., Shahraki, K., Fallahpour, S., & Namaki, A. (2023). A novel approach in predicting financial distress by financial network-based information and the integrated method of gradient boosting decision tree. Journal of Asset Management and Financing, https://ensani.ir/fa/article/583773 [In Persian].
Aflatoni, A. (2013). Statistical Analysis with Eviews in accounting and financial management research. Tehran, Termeh Publications. https://www.gisoom.com/book/11397041 [In Persian].
Altman E.I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.2307/2978933.
Altman, E.I., Iwanicz‐Drozdowska, M., Laitinen, E.K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐score model. Journal of International Financial Management & Accounting, 28(2), 131-171. https://doi.org/10.1111/jifm.12053.
Balakrishnan, R., Qiu, X.Y., & Srinivasan, P. (2010). On the predictive ability of narrative disclosures in annual reports. European Journal of Operational Research, 202(3), 789-801. https://doi.org/10.1016/j.ejor.2009.06.023.
Barzegari Khanagha, J., Ansari Samani, H., & Razzazzadeh, L. (2019). Predicting the financial status of companies using content analysis the reports of the board of directors. Empirical Studies in Financial Accounting, 16(64), 135-160. https://qjma.atu.ac.ir/article_10959.html?lang=en [In Persian].
Beaver, W. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 5, 71–111. https://doi.org/10.2307/2490171.
Beaver, W.H. (1966). Financial ratios as predictors of failure, empirical research in accounting: Selected studies. Journal of Accounting Research, 5, 71-111. https://doi.org/10.2307/2490171.
Blue, Gh., & Ahmadvand, M. (2019). A model for predicting corporate default in Tehran Stock Exchange. Journal of Accounting Knowledge, 10(1), 1-38.  https://jak.uk.ac.ir/article_2262.html?lang=en [In Persian].
Botshekan, M., Salimi, M., & Falahatgar Mottahedjoo, S. (2018). Developing a hybrid approach for financial distress prediction of listed companies in Tehran stock exchange. Financial Research Journal, 20(2), 173-192. https://jfr.ut.ac.ir/article_67697.html?lang=en [In Persian].
Cole, C.J., & Jones, C.L. (2005). Management discussion and analysis: A review and implications for future research. Journal of Accounting Literature, 24, 135. [ProQuest].
Clatworthy, M., & Jones, M.J. (2003). Financial reporting of good news and bad news: evidence from accounting narratives. Accounting and Business Research, 33(3), 171-185. https://doi.org/10.1080/00014788.2003.9729645.
Deakin, E.B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179. https://doi.org/10.2307/2490225.
Denis, D.J., & Denis, D.K. (1995). Causes of financial distress following leveraged recapitalizations. Journal of Financial Economics, 37(2), 129-157. https://doi.org/10.1016/0304-405X(94)00792-Y.
Ebrahimi sarv olia, M.H., Babajani, J., Akhond, M., & Fakher, E. (2019). A pattern for dynamic prediction of financial distress by using survival analysis. Quarterly Journal of Quantitative Economics, 15(4), 167-198. https://jqe.scu.ac.ir/article_14147.html [In Persian].
Fitzpatrick, P. (1932). A comparison of ratios of successful industrial enterprises with those of failed companies. The certified public accountant (October, November, December), 598–605, 656–662, and 727–731, respectively. https://www.sciepub.com/reference/297635.
Gilbert, L.R., Menon, K., & Schwartz, K.B. (1990). Predicting bankruptcy for firms in financial distress. Journal of Business Finance and Accounting, 17 (1), 161-171. https://doi.org/10.1111/j.1468-5957.1990.tb00555.x.
Guo, L., Shi, F., & Tu, J. (2016). Textual analysis and machine leaning: Crack unstructured data in finance and accounting. The Journal of Finance and Data Science, 2(3), 153-170. https://doi.org/10.1016/j.jfds.2017.02.001.
Gupta, V., & Lehal, G.S. (2009). A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 1(1), 60-76. https://doi.org/10.4304/jetwi.1.1.60-76.
Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud–A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139-152. https://doi.org/10.1016/j.knosys.2017.05.001.
Hajek, P., & Michalak, K. (2013). Feature selection in corporate credit rating prediction. Knowledge-Based Systems, 51, 72-84. https://doi.org/10.1016/j.knosys.2013.07.008.
Hajiha, Z., & Saberi Rochi, M.R. (2021). Text-mining technique and prediction of financial distress. Accounting and Auditing Studies, 10(38), 39-52. https://www.iaaaas.com/article_134533.html?lang=en [In Persian].
Hashemi Gelsefidi, A., Lashgari, Z., & Hajiha, Z. (2022). Using machine learning to provide a model for predicting bankruptcy. Accounting and Auditing Research, 14(56), 171-190. DOI: 10.22034/iaar.2022.168271 [In Persian].
Hackeling, G. (2017). Mastering machine learning with scikit-learn. Packt Publishing Ltd. [Amazon].
Henry, E. (2008). Are investors influenced by how earnings press releases are written? The Journal of Business Communication, 45(4), 363-407. https://doi.org/10.1177/0021943608319.
Henry, E., & Leone, A.J. (2016). Measuring qualitative information in capital markets research: Comparison of alternative methodologies to measure disclosure tone. The Accounting Review, 91(1), 153-178. https://doi.org/10.2308/accr-51161.
Hosseini, S.R., & Hajiannejad, A. (2022). The effect of statistical distribution of financial ratios on Altman model values using Monte Carlo simulation. Journal of Accounting Knowledge, 13(3), 161-193. https://jak.uk.ac.ir/article_3168.html?lang=en [In Persian].
Huang, B., Yao, X., Luo, Y., & Li, J. (2023). Improving financial distress prediction using textual sentiment of annual reports. Annals of Operations Research, 330(1), 457-484. https://doi.org/10.1007/s10479-022-04633-3.
Humpherys, S.L., Moffitt, K.C., Burns, M.B., Burgoon, J.K., & Felix, W.F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585-594. https://doi.org/10.1016/j.dss.2010.08.009.
Jo, N.O., & Shin, K.S. (2016). Bankruptcy prediction modeling using qualitative information based on big data analytics. Journal of Intelligence and Information Systems, 22(2), 33-56. https://doi.org/10.13088/jiis.
Kahl, M. (2002). Economic distress, financial distress and dynamic liquidation. The Journal of Finance, 57(1), 135-168. https://doi.org/10.1111/1540-6261.00418.
Kang, T., Park, D.H., & Han, I. (2018). Beyond the numbers: The effect of 10-K tone on firms’ performance predictions using text analytics. Telematics and Informatics, 35(2), 370-381. https://doi.org/10.1016/j.tele.2017.12.014.
Li, F. (2010). Textual analysis of corporate disclosures: A survey of the literature. Journal of Accounting Literature, 29, 143–165. https://ssrn.com/abstract=1756926.
Li, S., Shi, W., Wang, J., & Zhou, H. (2021). A deep learning-based approach to constructing a domain sentiment lexicon: a case study in financial distress prediction. Information Processing & Management, 58(5), 102673. https://doi.org/10.1016/j.ipm.2021.102673.
Li, J., & Wang, C. (2023). A deep learning approach of financial distress recognition combining text. Electronic Research Archive, 31(8), 4683-4707. DOI: 10.3934/era.2023240.
Loughran, T., & McDonald, B. (2010). Measuring readability in financial text. SSRN eLibrary, 64(4), 1643-1671. http://dx.doi.org/10.2139/ssrn.1920411.
Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The Journal of Finance, 66(1), 35-65. https://doi.org/10.1111/j.1540-6261.2010.01625.x.
Loughran, T., McDonald, B., & Yun, H. (2009). A wolf in sheep’s clothing: The use of ethics-related terms in 10-K reports. Journal of Business Ethics, 89, 39-49. https://doi.org/10.1007/s10551-008-9910-1.
Mai, F., Tian, S., Lee, C., & Ma, L. (2019). Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, 274(2), 743-758. https://doi.org/10.1016/j.ejor.2018.10.024.
Mehrani, S., & Nonahal Nahr, A.A. (2013). Evaluating the effect of the judgmental approaches of language in reducing audit expectation gap. Accounting and Auditing Review, 20(3), 123-144. DOI: 10.22059/acctgrev.2013.35679 [In Persian].
Mehrani, S., Mehrani, K., Monsefi, Y., & Karami, Gh. (2005). An application study of Zimsky and Shirana bankruptcy prediction models in companies listed on the Tehran Stock Exchange. Accounting and Auditing Reviews, 41, 105-131. https://acctgrev.ut.ac.ir/article_18462.html?lang=en [In Persian].
Merton, R.C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 141-183. https://doi.org/10.2307/3003143.
Merwin, C.L. (1942). Financing small corporations in five manufacturing industries, 1926–36. [NBER Books].
Namazi, M., & Ebrahimi, S. (2021). Financial distress prediction of the listed companies on Tehran Stock Exchange (TSE) and Iran Fara Burse (IFB) using support vector machine. Financial Management Strategy, 9(1), 115-132. https://jfm.alzahra.ac.ir/article_5588.html?lang=en [In Persian].
Opler, T.C., & Titman, S. (1994). Financial distress and corporate performance. The Journal of Finance, 49(3), 1015-1040. https://doi.org/10.1111/j.1540-6261.1994.tb00086.x.
Peleh, M., Izadinia, N., & Amiri, H. (2020). The effect of tone in board's activity reports on future performance based on signaling and opportunistic approach. Iranian Journal of Behavioral and Valued Accounting, 4(8), 1-31. http://aapc.khu.ac.ir/article-1-663-fa.html [In Persian].
Pindado, J., Rodrigues, L., & De la Torre, C. (2008). Estimating financial distress likelihood. Journal of Business Research, 61(9), 995-1003. https://doi.org/10.1016/j.jbusres.2007.10.006.
Platt, H.D., & Platt, M.B. (2006). Understanding differences between financial distress and bankruptcy. Review of Applied Economics, 2(2), 141-157. https://ideas.repec.org/a/ags/reapec/50146.html.
Rahimi, H., Minoui, M., & Fathi, M. (2024). Dynamic prediction of financial distress: A case study. Financial Economic Quarterly, 18(66), 385-408. https://sanad.iau.ir/fa/Article/1063299?FullText=FullText [In Persian].
Rahrovi Dastjerdi, A., Foroghi, D., & Kiani, G. (2018). Assessing managers fraud through analysis of board of directors report by data mining. Journal of Accounting Knowledge, 9(1), 91-114. https://jak.uk.ac.ir/article_1932.html [In Persian].
Song, Y., Jiang, M., Li, S., & Zhao, S. (2024). Class‐imbalanced financial distress prediction with machine learning: Incorporating financial, management, textual, and social responsibility features into index system. Journal of Forecasting, 43(3), 593-614. https://doi.org/10.1002/for.3050.
Sreedharan, M., Khedr, A.M., & El Bannany, M. (2020). A comparative analysis of machine learning classifiers and ensemble techniques in financial distress prediction. In 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 653-657. https://doi.org/10.1109/SSD49366.2020.9364178.
Tang, X., Li, S., Tan, M., & Shi, W. (2020). Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), 769-787. https://doi.org/10.1002/for.2661.
Tetlock, P.C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms' fundamentals. The Journal of Finance, 63(3), 1437-1467. https://doi.org/10.1111/j.1540-6261.2008.01362.x.
Ohlson, J.A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 109-131. https://doi.org/10.2307/2490395.
Wang, Z., Chen, M.H., Chin, C.L., & Zheng, Q. (2017). Managerial ability, political connections, and fraudulent financial reporting in China. Journal of Accounting and Public Policy, 36(2), 141-162. https://www.researchgate.net/publication/315499649.
Yang, J.H., & Liu, S. (2017). Accounting narratives and impression management on social media. Accounting and Business Research, 47(6), 673-694. https://doi.org/10.1080/00014788.2017.1322936.
Zare Bahnamiri, M.J., Heidary Surshjani, Z., & Joudaki Chegeni, Z. (2020). CEO power and earnings announcement tone with emphasis on the role of board oversight. Iranian Journal of Behavioral and Valued Accounting, 11(44), 119-143. https://qfaj.mobarakeh.iau.ir/article-1-2005-fa.html [In Persian].
Zmijewski, M.E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. https://doi.org/10.2307/2490859.