اعتمادی، حسین؛ زلقی، حسن. (1392). کاربرد رگرسیون لجستیک درشناسایی گزارشگری مالی متقلبانه. دانش حسابرسی، 13(51)، 163-145.
افلاطونی، عباس. (1394). تجزیه و تحلیل آماری با Eviews در تحقیقات حسابداری و مدیریت مالی. تهران: ترمه.
بروکس، کریس. (1971). مقدمهای بر اقتصادسنجی مالی، ترجمۀ احمد بدری و عبدالمجید عبدالباقی، تهران: نص، (1389).
خدادادی، ولی الله؛ ویسی، سجاد؛ چراغی نیا، علی. (1395). عدم قطعیت مدیریت و حقالزحمۀ حسابرسی. دانش حسابداری، 7(27)، 133-109.
رهنمای رودپشتی، فریدون. (1391). دادهکاوی و کشف تقلبهای مالی. دانش حسابداری و حسابرسی مدیریت، 1(3)، 17-33.
صفرزاده، محمدحسین. (1389). توانایی نسبتهای مالی در کشف تقلب در گزارشگری مالی: تحلیل لاجیت. دانش حسابداری، 1(1)، صص. 163-137.
فرجزاده دهکردی، حسن؛ آقایی، لیلا. (1394). سیاست تقسیم سود و گزارشگری مالی متقلبانه. مطالعات تجربی حسابداری مالی، 13(45)، صص. 114-97.
مهرانی، کاوه؛ حصارزاده، رضا. (1387). مروری بر تئوریها و الگوهای کشف تقلب. دانش و پژوهش حسابداری، 15، صص. 11-6.
نمازی، محمد؛ ابراهیمی، فهیمه. (1395). الگوبندی و تعیین اولویت عوامل مؤثر بر قصدگزارش تقلبهای مالی توسط حسابداران. مطالعات تجربی حسابداری مالی، 12(49)، صص. 28-1.
وحیدی الیزی، ابراهیم؛ حامدیان، حامد. (1388). برداشت حسابرسان ایران از کارایی علائم خطر در کشف گزارشگری مالی متقلبانه. تحقیقات حسابداری، 3، صص. 197-162.
Aflatooni, A. (2015). Statistical Analysis in Accounting and Financial Management by Eviews (Vol. 2). Tehran: Termeh [In Persian].
Alden, M.E., Bryan, D.M., Lessley, B.J., Tripathy, A. (2012). Detection of financial statement fraud using evolutionary algorithms. Journal of Emerging Technologies in Accounting, 9(1), 71-94.
Amani, F.A., Fadlalla, A.M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24(2017), 32-58.
Baldwin, A.A., Brown, C.E., Trinkle, B.S. (2006). Opportunities for artificial intelligence development in the accounting domain: The case for auditing. Intelligent Systems in Accounting, Finance and Management, 14(3), 77-86.
Baum, C.F. (2006). An Introduction to Modern Econometrics Using Stata. College Station, Texas: Stata Press.
Brooks, C. (1971). Introductory Econometrics for Finance (A. Badri & A. Abdolbaghi, Trans. Vol. 1). Tehran: Nass [In Persian].
Cecchini, M., Aytug, H., Koehler, G., Pathak, P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50(1), 164-175.
Dechow, P., Ge, W., Larson, C., Sloan, R. (2011). Predicting material accounting misstatements. Contemporary Accounting Research, 28(1), 17-82.
Elliott, R.K., Willingham, J.J. (1980). Management Fraud: Detection and Deterrence. New York: Petrocelli Books, 35-46.
Etemadi, H., Zalaghi, H. (2013). Application of logistic regression in identifying fraudulent financial reporting. Journal of Audit Science, 13(51), 5-23 [In Persian].
Farajzadeh, H., Aghaei, L. (2015). Dividend policy and fraudulent financial reporting. Empirical Studies in Financial Accounting, 12(45), 97-114 [In Persian].
Feldman, R., Govindaraj, S., Livnat, J., Segal, B. (2010). Management’s tone change, post earnings announcement drift and accruals. Review of Accounting Studies, 15(4), 915-953.
Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
Glancy, F., Yadav, S. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50(3), 595-601.
Goel, S., Gangolly, J. (2012). Beyond the numbers: mining the annual reports for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 19(2), 75-89.
Goel, S., Gangolly, J., Faerman, S.R., Uzuner, O. (2010). Can linguistic predictors detect fraudulent financial filings? Journal of Emerging Technologies in Accounting, 7(1), 25-46.
Greene, W.H. (2012). Econometric Analysis (Vol. 7): Prentice Hall.
Han, J., Kamber, M., Pei, J. (2006). Data Mining: Concepts and Techniques: Morgan Kaufmann.
Hastie, T., Tibshirani, R., Friedman, J. (2008). The Elements of Statistical Learning Data Mining, Inference, and Prediction (Vol. 2). Stanford, California: Springer.
Hoberg, G., Lewis, C. (2017). Do fraudulent firms produce abnormal disclosure? Journal of Corporate Finance, 43, 58-85.
Hribar, P., Kravet, T., Wilson, R. (2014). A new measure of accounting quality. Review of Accounting Studies, 19, 506-538.
Humphreys, S., K. Moffit, M. Burns, J. Burgoon, Felix, W. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585-594.
Jackson, J.M. (2002). Data mining: A conceptual overview. Communications of the Association for Information Systems, 8(1), 267-296.
Jensen, M.C., Meckling, W.H. (1976). Theory of the firm: managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305-360.
Khodadadi, V., Veisi, S., Cheraghinia, A. (2016). Management uncertainty and audit fees. Journal of Accounting Knowledge, 7(27), 109-133 [In Persian].
Kim, Y., Vasarhelyi, M.A. (2012). A model to detect potentially fraudulent/ abnormal wires of an insurance company: An unsupervised rule-based approach. Journal of Emerging Technologies in Accounting, 9(1), 95-110.
Kochetova-kozloski, N., Messier Jr., W.F., Eilifsen, A. (2011). Improving auditors' fraud judgments using a frequency response mode. Contemporary Accounting Research, 28(3), 837-858.
Larcker, D., Zakolyukina, A. (2012). Detecting deceptive discussions in conference calls. Journal of Accounting Research, 50(2), 495-540.
Li, F. (2010). Textual analysis of corporate disclosures: A survey of the literature. Accounting Literature, 29(1), 143-165.
Liou, F.M. (2008). Fraudulent financial reporting detection and business failure prediction models: A comparison. Managerial Auditing Journal, 23(7), 650-662.
Loughran, T., McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of Finance, 66(1), 35-65.
Mehrani, K., Hesarzadeh, R. (2008). A review of theories and models of fraud detection. Accounting Knowledge and Research, 15 (Winter), 6-11 [In Persian].
Namazi, M., Ebrahimi, F. (2016). Modeling and identifying effective factors affecting the intention of reporting financial fraudulent by accountant. Empirical Studies in Financial Accounting, 13(49), 1-28 [In Persian].
Pai, P.F., Hsu, M.F., Wang, M.C. (2011). A support vector machine-based model for detecting top management fraud. Knowledge-Based Systems, 24(2), 314-321.
Pujari, A.K. (2001). Data Mining Techniques: Universities press.
Purda, L., Skillicorn, D. (2015). Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection. Contemporary Accounting Research, 32(3), 1193–1223.
Rahnamay Roodposhti, F. (2012). Data mining & financial fraud. Journal of Management Accounting and Auditing Knowledge, 1(3), 17-34 [In Persian].
Safarzadeh, M. (2010). The ability of financial ratios in detecting fradulent financial reporting: Logit analysis. Journal of Accounting Knowledge, 1(1), 137-163 [In Persian].
Tackett, J.A. (2013). Association rules for fraud detection. Journal of Corporate Accounting and Finance, 24(4), 15-22.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267-288.
Vahidi, E., Hamedian, H. (2009). Iranian auditors' perceptions of the effectiveness of risk signs in detecting fraudulent financial reporting. Accounting Researches, Fall (3), 162-197 [In Persian].
Wang, Z., Chen, M.H., Chin, C.L., Zheng, Q. (2017). Managerial ability, political connections, and fraudulent financial reporting in China. Journal of Accounting and Public Policy, 36(2), 141-162.