Predicting Auditor’s Opinions: A Neural Networks Approach

Document Type : Research Paper

Authors

Abstract

     Data mining methods can be used in order to facilitate auditors to issue their opinion. This paper initially applies two Data Mining classification techniques to develop models capable of identifying auditor’s opinion in Iran. The techniques used are Multilayer Perceptron neural network and Logistic regression. The period of this research is start of 2003 to end of 2009. The input vector is compose of financial data such as financial distress and non-financial data such as firm litigation. The four developed models are compared in terms of their performance. The results demonstrate the high explanatory power of the MLP model in identification of audit opinion. The model developed is accurate in classifying the total sample correctly with rate 87/75%. The model is also found to outperform traditional logistic regression. The result of this study can be useful to internal and external auditors, Investors, creditors, company decision-makers and other stakeholders.

Keywords


- نیکخواه آزاد، علی(1379)، «بیانیه مفاهیم بنیادی حسابرسی» کمیته تدوین رهنمودهای حسابرسی، سازمان حسابرسی.
- کوپایی، مهدی(1387)، «بررسی توانایی متغیرهای مالی در پیش بینی بحران مالی در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران»، پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان.
- اکبری، فضل‌الله و علی‌مدد، مصطفی (1379) ، «بررسی تحلیلی یا استفاده از تجزیه و تحلیل در حسابرسی» مرکز تحقیقات تخصصی حسابداری و حسابرسی.
- کیا، مصطفی (1387)، «شبکه‌های عصبی در MATLAB« تهران، خدمات نشر کیان رایانه‌ سبز.
- Gaganis, C., Pasiouras, F. and Doumpos, M., (2007),"Probabilistic neural networks for the identification of qualified audit opinions", Expert Systems with Applications, Vol. 32, pp. 114–124
- Efstathios, K., Spathis , C., Nanopoulos, A and Manolopoulos, Y. (2007), "Identifying Qualified Auditors’ Opinions: A Data Mining Approach," Journal of Emerging Technologies in Accounting, Vol. 4, pp. 183-197.
-Spathis, C., Doumpos, M., and Zopounidis, C. (2004), "Multicriteria Discrimination Approach to Model Qualified Audit Report," Operational Research. An International Journal, Vol. 4, No. 3. pp. 347-355
 -Gaganis, C., Pasiouras, F., Spathis,C. and Zopounidis, C. (2007), "A Comparison of nearest neighbors, discriminate and logit models for auditing decisions," Intelligent Systems in Accounting, Finance and Management, Vol. 15, pp. 23–40
- Hakin, S., (1999), "Neural Networks," Second Edition, Simon and Schuster company, New Jersy.