The Ability of Financial Ratios in Detecting Fradulent Financial Reporting: Logit Analysis

Document Type : Research Paper



Using logit analysis in cross section data, this paper examine the role of accounting data to develop a model for detecting factors associated with fraudulent financial reporting. The sample is comprised of 178 firms (66 with fraudulent financial reporting and 112 with non-fraudulent financial reporting) listed in Tehran Stock Exchange (TSE) during the period of 1383-1386. Firms with fraudulent financial reports selected on the basis of 1) Inclution of company in TSE lists for reasons associated with falsification of financial data and 2) doing insider trading and the existence of court proceedings pending with respect to fraudulent financial reporting. After doing analysis ten financial ratios introduced for examination as potential predictors of fraudulent financial reporting.
The results indicate that the model is accurate in classifying the total sample correctly with accuracy rate exceeding 82.98 percent. Also, results demonstrate that the models function effectively in detecting fraudulent financial reporting and can be of assistance to various users such as auditors, taxation and other state authorities, the banking system, and so on.


- گجراتی، دامودار، (2005)، مبانی اقتصادسنجی، (حمید ابریشمی)، تهران، انتشارات دانشگاه تهران، (1383، ج دوم، چ سوم.
- سرمد، زهره؛ عباس، بازرگان و الهه، حجازی، (1385)، روشهای تحقیق در علوم رفتاری، تهران، انتشارات آگاه. چ سیزدهم.
-      Ahmed, N., Mohd-Nor, J. and Mohd-Saleh, N. (2009). Fraudulent Financial Reporting and Company’s Characteristics, Accounting Perspectives, Vol.7 (3), pp. 189-226.
-      AICPA. (1997). Consideration of Fraud in A Financial Statement Audit. Statement on Auditing Standards no.82. American Institute of Certified Public Accountants, New York.
-      Albrecht, W. S., C. C. Albrecht and C. O. Albrecht. (2004). Fraud and Corporate Executives: Agency, Stewardship and Broken Trust. Journal of Forensic Accounting, Vol. 5, pp. 109-130.
-      Ansah, S. O., Moyes, G. D., Oyelere, P. B., and Hay, D. (2002). An Empirical Analysis of the Likelihood of Detecting Fraud in New Zealand. Managerial Auditing Journal, Vol. 17(4), pp. 192-204.
-      ACFE. (2004). 2004 Report to the Nation on Occupational Fraud and Abuse. Association of Certified Fraud Examiners, Austin. Texas.
-      Beasley, M. S. (1996). An Empirical Analysis of the Relation between Board of Director Composition and Financial Statement Fraud. Accounting Review, Vol. 71 (4), pp. 443- 465. 
-      Beasley, M. S., J. V. Carcello, D. R. Hermanson and P. D. Lapides. (2000). Fraudulent Financial Reporting: Consideration of Industry Traits and Corporate Governance Mechanisms. Accounting Horizons, Vol. 14 (4), pp. 441- 454. 
-      Bell T. and Carcello J. (2000). A Decision Aid for Assessing the Likelihood of Fraudulent Financial Reporting. Auditing: A Journal of Practice & Theory, Vol. 9 (1), pp. 169- 178.
-       Bourke, N. and Van Peursem, K. (2004). Detecting Fradulent Financial Reporting: Teaching the Watchdog New Tricks. Working Paper, Department of Accounting. University of Waikato. New Zealand.
-       COSO. (1999). Fraudulent Financial Reporting: 1987-1997: An Analysis of US Public Companies. Committee of Sponsoring Organizations of the Treadway Commission. New York. NY.
-       Dechow, P. A., R. G. Sloan A. P. Sweeney. (1996). Causes and Consequences of Earnings Manipulation: an Analysis of Firms subject to Enforcement Actions by the SEC. Contemporary Accounting Research, Vol. 13(1), pp.1-36.
-       Elliot, R. and Willingham, J. (1980). Management Fraud: Detection and Deterrence. Petrocelli, New York. NY.
-       Ernest & Yang. (2003). Fraud, the Unmanaged Risk: English Global Survay. London.
-       Fama, E. F., and M. C. Jensen. (1983). Seperation of Ownership and Control. Journal of Law and Economics, Vol. 26, pp.301-325.
-       Forez, E. H., K. Park and S. Pastena. (1991). The Financial and Market Effects of the SECיs Accounting and Auditing Enforcement Releases. Journal of Financial Economics, Vol. 27, pp.355-387.
-       Green B. P. and Choi J. H. (1997). Assessing the Risk of Management Fraud through Neural Network Technology. Auditing: A Journal of Practice and Theory, Vol. 16(1), pp.14-28.
-      Grove, H. and Basilico, E. (2008). Fraudulent Financial Reporting Detection: Key Ratios Plus Corporate Governance Factors, Int. Studies of Mgt. & Org., Vol. 38 (3) , pp. 10-42.
-       IFAC. (1982). Fraud and Error. International Statement on Auditing No.11. International Federation of Accountants.
-       Kaminsky, K. A., Wetzel, T. S., and Guan, L. (2004). Can Financial Ratios Detect Fradulent Financial Reporting?, Managerial Auditing Journal, Vol. 19(1), pp. 15-28.
-       Kirkos, S., Spathis, C., and Manolopoulos, Y. (2007). Data Mining Techniques for the Detection of Fraudulent Financial Statements, Expert Systems with Applications, Vol.32, pp. 995-1003.
-       Kotsiantis, S., Koumanakos, E., Tzelepis, D., and Tampakas, V. (2006). Forecasting Fradulent Financial Statements Using Data Mining. Procedings of World Academy of Science, Engineering and Technology, Vol.12, pp. 284-289.
-       Lin, J. W., Hwang, M. I., and Becker, J. D. (2003). A Fuzzy Neural Network for Assessing the Risk of Fraudulent Financial Reporting. Managerial Auditing Journal, Vol.18 (8), pp. 657-665.
-      Quan, L. (2007). Fraudulent Financial Reporting: Theory and Evidence, Journal of Modern Accounting and Auditing, Vol. 3(2), PP. 12-14.
-       Spathis, C. (2002). Detecting False Financial Statements Using Published Data: Some Evidence from Greece. Managerial Auditing Journal, Vol. 17(4), pp. 179-191.
-       Summers, S. L. and J. T. Sweeney. (1998). Fradulently Misstated Financial Statements and Insider Trading: An Empirical Analysis. Accounting Review, Vol. 73 (1), pp. 131- 146. 
-       Wallace, W. A. (1995). Auditing. South-Western College Publishing. Cincinnati. OH.
-       Watts, R. L. and Zimmerman, J. L. (1986). Positive Accounting Theory. NJ: Prentice-Hall.
-       Young, M. R. (2000). Accounting Irregularities and Financial Fraud. Harcourt Inc. San Diego.